
On-Demand Unstructured Mesh Translation for Reducing
Memory Pressure during In Situ Analysis

Jonathan Woodring and
James Ahrens
CCS-7 Division

Los Alamos Natl. Laboratory
Los Alamos, NM 87544, USA

{woodring|ahrens}
@lanl.gov

Timothy J. Tautges,
Tom Peterka, and

Venkatram Vishwanath
MCS Division

Argonne National Laboratory
Lemont, IL 60439, USA

{tautges|tpeterka|venkatv}
@mcs.anl.gov

Berk Geveci
Kitware, Inc.

Clifton Park, NY 12065, USA
berk.geveci@kitware.com

ABSTRACT
When coupling two different mesh-based codes, for example
with in situ analytics, the typical strategy is to explicitly
copy data (deep copy) from one implementation to another,
doing translation in the process. This is necessary because
codes usually do not share data model interfaces or imple-
mentations. The drawback is that data duplication results
in an increased memory footprint for the coupled code. An
alternative strategy, which we study in this paper, is to share
mesh data through on-demand, fine-grained, run-time data
model translation. This saves memory, which is an increas-
ingly scarce resource at exascale, for the increased use of in
situ analysis and decreasing memory per core. We study the
performance of our method compared against a deep copy
with in situ analysis at scale.

Categories and Subject Descriptors
D.1.m [Programming Techniques]: Miscellaneous

General Terms
Performance

Keywords
in situ analysis, lazy evaluation, unstructured grids, compu-
tational meshes

1. INTRODUCTION
Explicit data duplication (deep copying) is the usual so-

lution to share meshes between coupled codes (linked at the
memory interface), but there is an increased memory foot-
print overhead. For example with in situ (run-time) analysis,
simulation mesh data are typically duplicated and translated
to an analysis mesh copy. This is because different codes,

UltraVis’13, November 17-21 2013, Denver, CO, USA
Copyright is held by the owner/author(s).
Publication rights licensed to ACM.
ACM 978-1-4503-2500-4/13/11...$15.00
http://dx.doi.org/10.1145/2535571.2535592

especially libraries, do not share the same data models, inter-
faces, and/or implementations. We investigate mesh shar-
ing without data duplication (shallow copy) through on-
demand, fine-grained, run-time data model translation, for
two reasons: 1) Saving memory is important for exascale ar-
chitectures as memory is decreasing per core. 2) Our method
allows two codes to interpret data in their native interface
without refactoring algorithms.

We show this on-demand, shallow copy method is a fea-
sible solution for sharing meshes with in situ analysis. We
couple two different mesh models, MOAB (Mesh-Oriented
datABase) [26] and VTK (Visualization ToolKit) [24], for
our study. VTK and MOAB do not share implementations
or interfaces, therefore it is not as simple as pointer shar-
ing. With our on-demand translation, we show that VTK
algorithms (filters) are able to run directly on a MOAB
mesh, without rewriting the algorithms and saving precious
memory. Our methodology and performance study provides
guidance to be able to replicate this process for on-demand
shallow-copy-sharing in other mesh sharing codes.

2. BACKGROUND
Code coupling is necessary for many large-scale simula-

tions, ranging from coupled multi-physics, in situ analy-
sis [28], and I/O libraries. Coupling via memory avoids
performing I/O to storage or over the network, avoiding the
one of slowest bottlenecks. ParaView Catalyst [10] and VisIt
Libsim [31] are in situ libraries based on VTK [24] that al-
low analysis to run in simulations. DIY [21] is a library for
constructing visualization and analysis algorithms, using a
data model similar to MPI and MPI-IO.

Unfortunately, a problem arises for memory sharing that
different codes usually do not share data models. Many
mesh-based codes (simulations) grow their own custom mesh
models. Sandia National Laboratories have originated sev-
eral: phdMesh [12], Exodus II [23], and CUBIT [3]. ITAPS
[5] is an effort to standardize the data model interface for
meshing tools, and MOAB [26] implements the iMesh inter-
face. GAMBIT [2] is a popular mesh implementation used
for CFD and other physical simulations. In visualization and
analysis, many of the data models are based on OpenDX and
IBM Data Explorer [1], such as VTK for example. More re-
cently, there has been research into new analysis data mod-
els suitable for next generation architectures: PISTON [16],
DAX [19], and EAVL [18].

There are even different data models used in I/O libraries
[15, 27], as most adapt an agnostic, byte-based data model,
losing most of the semantic mesh information. Applica-
tions have to share data model semantics, either verbally
or through metadata, to be able to interpret data. More so-
phisticated I/O libraries, such as HDF5 [11], pNetCDF [15],
sciDB [4], NetCDF4 [22], and XDMF [6], provide schema for
storing and retrieving mesh semantics. ADIOS [17], DataS-
paces [8], GLEAN [29], HIO [7], DAMSEL [25], Panda [14]
and DRepl [13] are advanced I/O and communication li-
braries for coupling codes and translating between data for-
mats, memory models, and serialized data.

Since data models can vary greatly, shared data are usu-
ally copied from one mesh implementation to another, using
extra memory. If two mesh data models have similar imple-
mentations, it may be possible to pass the implementation
by reference. However, best practices in code design discour-
age the direct sharing of data structures between codes. This
propagates implementation dependencies and makes code
development much more difficult and fragile. In our work,
coupled codes can continue to use their own data model,
without reference sharing that results in fragility and forces
algorithm implementation changes. Our work achieves this
through on-demand, lazy evaluation, only converting mesh
data as necessary. This saves memory by avoiding explicit
mesh duplication. Many data flow pipeline implementations
follow the lazy evaluation model, but at a coarse granular-
ity [1, 24, 31]. Our work is more similar to fine-grain, lazy
evaluation model (generators) found in functional languages
like Haskell, OCaml, and Scheme and other languages like
Python. There have been several efforts to integrate fine-
grain, lazy evaluation into visualization execution [9, 30].

3. UNSTRUCTURED MESHES

������ ��		�
�����

Figure 1: Examples of points, cells, and meshes.

To be able to transparently share meshes between two cou-
pled codes, one must look into the differences and similarities
in data models and implementations. We will be primarily
concerned with the sharing and translation of two different
unstructured grids (meshes): MOAB and VTK. A mesh is
a graph consisting of points (vertices) and cells (zones) (see
Figure 1). Points are 0 dimensional entities. A cell is a set
of connected points, where they form n dimensional entities
enclosing a space, e.g., edges (1D), faces (2D), and volumes
(3D). Unstructured grids are arbitrary meshes that can con-
tain any number of cell types and are able to represent all
other mesh types. Therefore, they provide a good base for
our studies. Other specialized meshes (like image data or
structured meshes) have constraints that can be used to op-
timize memory usage and/or accelerate computation.

The information that is required for an unstructured mesh
(and what needs to be shared) is a point list, cell connec-
tivity list, and cell type list. Also, there are domain-specific

quantities associated with points and cells that need to be
shared, typically called attribute data (the “variables”). For
example, points will have position attribute data, for its
x, y, z coordinates. Attribute data can be arbitrary, de-
pending on the usage domain, such as different scalar, tu-
ple (vector), and tensor (matrix) quantities. Adjacency and
neighborhood information, such as shared points between
cells, can be explicitly stored as attribute data in an un-
structured mesh implementation that are implicit in other
meshes. There can be field data associated with an entire
mesh or a subset of a mesh, such as time step or block iden-
tifier. Finally, large-scale meshes in supercomputing appli-
cations have attribute data to describe parallel partitioning
and sharing, such as ghost cell ownership.

Exemplar Differences: MOAB and VTK.
MOAB (Mesh Oriented datABase) is a library for rep-

resenting, storing, reading, and evaluating mesh data for
both structured and unstructured meshes. It implements
the ITAPS iMesh interface [5] allowing it to freely oper-
ate with other tools using ITAPS interfaces. MOAB’s data
model consists of four basic types: entities, entity sets, the
interface instance, and tags. Entities are points and cells.
Tags are attribute or field data. Entities (points and cells)
in MOAB are referenced using “handles,” which represent
both the type (with the high-order bits) and the address
(unique identifier). MOAB stores “sequences” of handles,
represented by a pair of handles (the upper and lower bound)
for a contiguous range of addresses.

A key data structure in MOAB is the Range, which can
store arbitrary lists of dense handles (addresses) and it uses
C arrays to store dense attributes associated with a Range.
We refer to “dense” or “sparse” as the difference between us-
ing every address in a consecutive address range (a “dense”
array where every address is used) or selected addresses in a
consecutive address range (a “sparse” associative map where
there are gaps in the addresses used). For example, point co-
ordinate attributes are represented using three dense arrays,
associated with the consecutive point handle addresses. At-
tributes can be “sparse,” as well in MOAB, with data stored
by a (handle, value) associative map.

VTK (Visualization ToolKit) is a general purpose visu-
alization and analysis library that supports many different
mesh types, including unstructured grids, which is used by
several visualization and analysis software packages. A VTK
unstructured grid (vtkUnstructuredGrid) is represented by
several VTK classes and C arrays: vtkPoints for point iden-
tifiers and coordinates, vtkCellArray for cell identifiers and
connectivities, an array for cell types, an array for random
access into the vtkCellArray, and vtkDataSetAttributes (a
container of vtkDataArrays) for holding field and attribute
data. The points and cells are identified by dense addresses,
starting at 0. Point and cell addresses are contained in sep-
arate address namespaces, due to being stored in separate
containers. Attribute data, which are stored in vtkDataAr-
rays, are always dense.

The primary data model difference between the two un-
structured grid implementations is how cells and points are
addressed and the sparsity of addresses. In VTK, points
and cells are referenced by 0-based indices, while in MOAB
addressing can start at any base. MOAB mixes point and
cell identifiers in the same address space, while VTK uses
separate address spaces. Point and cell types are implicit

in the MOAB address (the high bits) while VTK uses a
separate data array to indicate cell type. All VTK ad-
dresses are dense, where point and cell addresses are in the
[0, n − 1] range, while MOAB addresses use a combination
of sparse and dense address ranges. Likewise, attribute data
in MOAB may be sparse and only defined for certain points
or cells, while VTK allocates data for all points and/or cells,
for a particular attribute.

Internally MOAB and VTK both use C arrays for their
data structures, but they use them in different ways. For
example, MOAB uses a column store for the x, y, z point
coordinates, while VTK uses an interleaved (row) store for
point coordinates. MOAB is flexible with its definitions of
point connectivities per type. For example, it does not en-
force that tetrahedra only have 4 points per cell in the cell
connectivity array. In contrast, VTK has strict definitions
of cell types, and algorithms expect that a tetrahedron only
has 4 points per cell. Likewise, VTK can mix different cell
types in the connectivity array, while MOAB will separate
cells by types into contiguous sequences. What this means
is that it is not possible to directly share references of data
structures between MOAB and VTK. They both use C ar-
rays, but have very different internal implementations of the
unstructured grid data model.

4. COPYING UNSTRUCTURED MESHES
We will discuss the similarities and differences of a tradi-

tional “deep copy” (duplication of source mesh data to desti-
nation mesh) and our on-demand, run-time translation (on-
demand “shallow copy”). We will use MOAB and VTK as
our example source and destination meshes. Our methodol-
ogy should be applicable to most unstructured grid imple-
mentations and provide lessons for performance. To perform
a deep copy, for every point in a MOAB mesh, we get the
MOAB coordinates, look up the VTK address for that point,
and set the corresponding VTK point coordinates. Likewise,
for every cell in MOAB, we acquire the MOAB connectivity
list for a cell, convert the point addresses in that list to VTK
point addresses, look up the VTK address for that cell, and
insert the connectivity list into VTK with a VTK order-
ing. Simultaneously, we convert the MOAB cell type into a
cooresponding VTK cell type when inserting the cell. For
attribute data, the data are copied from MOAB C arrays to
VTK vtkDataArrays, making sure to convert addresses.

The main difference between a deep copy and shallow copy
is the point in time when the conversion is done. For a deep
copy, the MOAB mesh conversion is done all at once, storing
the results in an VTK copy of the data. An on-demand,
shallow copy defers the MOAB to VTK conversion to any
VTK data access. For example if VTK requests point data
from a deep copy of a MOAB mesh, the data are already
converted (memoized) and read back from VTK memory.
In an on-demand, shallow copy version, point data are read
from MOAB memory, and converted to VTK point data
format, at that point in time and no sooner than that. While
this has a drawback of extra computation, there is a huge
memory savings, due to not explicitly storing an extra copy
of data. Our later results will show that the computational
overhead (for our in situ analysis use cases) is small and
insignificant.

Address Translation for Points and Cells.
The first hurdle for copying points and cells from MOAB

� ��� � ���

� �
� � �	
 � �	�

��������� ��������

����������������������
���������

�	 ! !	"

� 	� 	"	� �

	�
	�	�

Figure 2: An example mapping of MOAB addresses
to VTK addresses.

to VTK (and any unstructured grid implementation) is ac-
counting for the address differences. Therefore, we need
an address translating function M (Figure 2) that converts
VTK addresses to MOAB addresses: M(src) → dest, where
src is the source address (MOAB) and dest is the destination
address (VTK). Due to the potential sparsity of MOAB ad-
dresses, we utilize a map and address arithmetic to convert
MOAB source addresses into VTK destination addresses.
The naive solution would use a map consisting of (key, value)
pairs for every single source to destination mapping. That
particular solution drastically increases the memory foot-
print and slows the address translation speed to O(log(n)).

Instead, we map ranges of MOAB source addresses (con-
secutive addresses in a Range) to ranges of destination VTK
addresses (some segment between [0, n−1]), by M : [lowers,
uppers] #→ [lowerd, upperd], where s denotes a MOAB source
range and d is a VTK destination range. MOAB addresses
consist of dense addresses sequences, [loweri, upperi] for the
ith sequence. VTK address range is implicitly [0, p − 1] for
p points and [0, c − 1] for c cells. To do the mapping, we
break the VTK destination addresses into equal sized sub-
sequences to matching MOAB source sequences.

The lower bound operation is used to find the range map-
ping during address translation. The key in the map is the
right hand end of the source address range (uppers in a
[lowers, uppers]) range. The value is not the destination
address, but the difference between the left hand end of
the mapped MOAB source and VTK destination (lowerd −
lowers where the two mapped ranges are [lowers, uppers]
and [lowerd, upperd]). In C++ map notation, this address
mapping is stored as: m[uppers] = lowerd − upperd, which
is only as large as the number of MOAB address subse-
quences. Therefore, the address translating function M is
implemented by dest = m.lower bound(src) + src. The
address translation time, comparatively, is on the order of
lower bound or O(log(i)), where i is the number of MOAB
address subsequences, a small constant. An inverse address
mapping function M−1 can be created similarly, as well,
which is necessary for converting cell connectivity lists.

Copying Attribute and Array Data.
Due to the sparsity of MOAB attributes, we query the

MOAB attributes to determine if a particular attribute is
defined. If an attribute is defined for at least one point or
cell during a deep copy, we create a copy of the MOAB at-
tributes, for all points and/or cells, into a VTK vtkDataAr-
ray. If the attribute is not defined for a particular point or
cell, a default value is copied into the vtkDataArray. This
is due to the fact that VTK uses dense point and cell at-
tributes. Therefore, if at least one MOAB point has a par-
ticular attribute, a new VTK array will be created in the

VTK copy of the mesh for that attribute. In an on-demand
shallow copy version, attribute data are looked up in MOAB
on every VTK attribute access. This requires doing a reverse
address lookup for the requested VTK point to translate it
to MOAB address space, and then retrieve the attribute
data from MOAB, returning it to VTK.

Additionally, VTK has other array data that are implicit
or unnecessary in MOAB. For example, cell type attributes
are stored in an array in VTK which are implicit to MOAB
cell addresses. In MOAB, the high-bits of a cell address
are used to indicate the cell type. When deep copying cells,
MOAB cell types are converted to VTK cell types and stored
in the VTK cell type array. In the shallow copy version,
cell types are determined through converting a VTK cell
address to MOAB cell address, stripping the high-bits, and
converting those high-bits back to a VTK cell type.

One additional array that VTK requires in a deep copy,
which MOAB doesn’t have, is a cell address offset into the
vtkCellArray. In VTK, vtkCellArray is a list of all cell con-
nectivities. To provide random access to a cell’s connectivity
by cell address, VTK uses an address offset lookup into the
cell connectivity list. During a deep copy, this array will be
updated as MOAB cells are copied to VTK. In a shallow
copy, this extra array is not necessary. A VTK cell address
is converted to a MOAB address, connectivity is retrieved
from MOAB, and point addresses are converted from MOAB
addresses to VTK addresses.

Automatic Shallow Copy via Implementation Hiding.
The final point of discussion is the code refactoring re-

quired to implement deep copy vs. on-demand shallow copy.
In a deep copy, the translation code is isolated to one point
of a coupled code. A source mesh is copied to a destination
mesh, applying translation functions only once. From that
point forward, the copied mesh can be used in algorithms. In
a naive on-demand shallow copy solution, translation func-
tions can be embedded at the point needed to convert from
one mesh model to another for algorithms attempting to
share a mesh. Again, this scatters implementation depen-
dent code, leading to fragility and maintenance issues.

A better solution is to hide on-demand translation code in
an implementation of a copied mesh data model, assuming
that algorithms use data model interfaces and not data model
implementations. It requires that coupled codes do not use
implementation level details. For example with MOAB and
VTK, we created an implementation of vtkUnstructured-
Grid that is a shallow copy of a MOAB mesh. We created
new implementations of vtkPoints, vtkCellArray and vtk-
DataArray, which reference an existing MOAB mesh, doing
translation from MOAB to VTK on-demand. This transla-
tion is hidden, as it becomes part of the mesh implementa-
tion. This methodology for on-demand translation is just as
seamless as a deep copy, from the perspective of VTK filters.

In C++, this corresponds to creating pure virtual classes
(interfaces) for the data structures used by vtkUnstructured-
Grid, with two explicit implementations for each of the data
structures. The first implementation is the default VTK
implementation, while the second implementation contains
a MOAB mesh that does on-demand translation to the VTK
data model. This allows all existing VTK unstructured grid
algorithms to work as-is, regardless if it is a native VTK
implementation or a MOAB shallow copy. This also means
there is very little to no change to be made to the VTK

algorithm codes, either.
The pseudocode for most implemented data access meth-

ods on the MOAB shallow copy becomes: 1) convert VTK
id into MOAB handle, 2) retrieve data from MOAB via han-
dle, 3) optionally, convert data to VTK data model as nec-
essary (e.g., point addresses), and 4) return data to VTK.
This type of translating code is sometimes referred to as a
“thunk.” A thunk is transparent to both sides of a coupled
code, as it avoids any direct implementation dependencies,
which has already been prototyped in most cases by a deep
copy implementation.

One of the side effects of testing MOAB shallow copy
implementations in VTK (and one of the reasons we have
been stressing the importance of interface vs. implemen-
tation separation in data models) was that several algo-
rithms/filters did require alterations, due to the way VTK is
currently implemented. This is because existing algorithms
assume that there is only one implementation of a data set
or data structure. Therefore, many VTK algorithms will
use direct pointer access to the internal data of a data set,
utilizing VTK implementation level details. To fix those fil-
ters, it was a minor change that required an algorithm to
iterate over a data set through its interface and not its im-
plementation. This change did not change the logic of the
individual algorithms, but it was tedious from man-hours
perspective to fix the code. As we can see, changes in an
implementation of a data model have far reaching effects on
other code if they rely on implementation details.

5. PERFORMANCE RESULTS
To test the performance of our on-demand mesh trans-

lation vs. deep copy, we created a proxy application to
simulate in situ workloads (to be released, open-source at
a later date). The proxy application can shallow copy or
deep copy a MOAB mesh to a VTK mesh with the fol-
lowing operations: copy only, touch (read) all mesh data,
slice, clip, isosurface, threshold, surface rendering to PNG,
and write to VTK file. It can run in serial or parallel, and
link against unmodified VTK for baseline testing. Shallow
copies do all mesh access through interface (get and set) op-
erations, rather than pointer (implementation) access found
in default VTK.

For our two small-scale tests, we used an HP SL230 (Intel
Xeon E5-2650L: 2 sockets, 8 cores per socket @ 1.8 GHz)
and an HP DL980 (Intel Xeon X6550: 8 sockets, 8 cores
per socket @ 2.0 GHz), each with 128GB of memory. For
our large-scale tests, we ran on cluster named “Moonlight,”
listed as“ML” in our plots. Moonlight nodes have two 8-core
Intel Xeon E5-2670 running at 2.6 GHz each, for total of 512
processes in our largest tests, with 32GB memory per node.
Small-scale tests used 1 to 8 million tetrahedra meshes, while
large-scale tests used 16 to 512 million quadrilateral meshes,
both with only one scalar attribute (fewer attributes will
be in favor of a deep copy performance). The performance
study measured the average time and maximum memory
of the Cartesian product of: [refactored VTK, unmodified
VTK] x [shallow copy, deep copy] x [copy only, touch (read)
all data, slice, clip, threshold, isosurface, surface rendering]
x 5 times. MOAB, VTK, and the proxy application were
compiled with standard gcc -O2 options. Timing was done
through clock gettime (MONOTONIC CLOCK) and mem-
ory was measured as incremental, high-water differences us-
ing the Linux /proc/smaps interface.

Due to lack of space, we provide a common key for all of
the plots: Dashed lines are shallow copy and/or refactored
versions of VTK. Solid lines are deep copy and/or default
versions of VTK. For “SL230” and “DL980” single machine
tests, magenta lines are 8 million tets (tetrahedra), blue lines
are 4 million tets, green lines are 2 million tets, and red lines
are 1 million tets. For “ML” cluster tests, grey lines are 512
million quads (quadrilaterals), orange lines are 256 million
quads, magenta lines are 128 million quads, blue lines are
64 million quads, green lines are 32 million quads, and red
lines are 16 million quads.

Performance of Deep Copy Implementations.

 0.01

 0.1

 1

 10

 1 10

Ti
m

e
(s

)

Processors (1-16)

SL230 Copy

 0.001

 0.01

 0.1

 1

 10

 1 10

Ti
m

e
(s

)

Processors (1-64)

DL980 Copy

Figure 3: Refactored deep copy compared to default
VTK deep copy. SL230 is 1.07 times slower and
DL980 is 1.04 times slower.

 0.001

 0.01

 0.1

 1

 1 10

Ti
m

e
(s

)

Processors (1-16)

SL230 Touch All Data Once

 0.01

 0.1

 1

 10

 1 10

Ti
m

e
(s

)

Processors (1-16)

SL230 Contour

 0.1

 1

 10

 1 10

Ti
m

e
(s

)

Processors (1-16)

SL230 Clip

 0.01

 0.1

 1

 1 10

Ti
m

e
(s

)

Processors (1-16)

SL230 Slice

 0.01

 0.1

 1

 10

 1 10

Ti
m

e
(s

)

Processors (1-16)

SL230 Threshold

 0.1

 1

 10

 1 10

Ti
m

e
(s

)

Processors (1-16)

SL230 Surface Render

Figure 4: SL230 refactored compared to default
VTK filtering. Touching is 1.35 times slower, isocon-
touring is 1.53 times slower, clipping is 1.14 times
slower, slicing is 1.26 times slower, thresholding is
1.39 times faster, and rendering is 1.05 times slower.

Figures 3, 4, and 5 show the differences between deep
copies of our refactored VTK (virtualized functions and data
access through get-set operations) vs. deep copies of the de-

 0.001

 0.01

 0.1

 1

 1 10

Ti
m

e
(s

)

Processors (1-64)

DL980 Touch All Data Once

 0.01

 0.1

 1

 10

 1 10

Ti
m

e
(s

)

Processors (1-64)

DL980 Contour

 0.1

 1

 10

 1 10

Ti
m

e
(s

)

Processors (1-64)

DL980 Clip

 0.01

 0.1

 1

 10

 1 10

Ti
m

e
(s

)

Processors (1-64)

DL980 Slice

 0.01

 0.1

 1

 10

 1 10

Ti
m

e
(s

)

Processors (1-64)

DL980 Threshold

 0.1

 1

 10

 1 10

Ti
m

e
(s

)

Processors (1-64)

DL980 Surface Render

Figure 5: DL980 refactored compared to default
VTK filtering. Touching is 1.28 times faster, isocon-
touring is 1.46 times slower, clipping is 1.12 times
slower, slicing is equal in speed, thresholding is 1.24
times faster, and rendering is 1.04 times slower.

fault VTK implementation (non-virtual functions and data
access through pointers). A MOAB mesh was deep copied
to a VTKmesh, in both cases. This exposes the performance
overhead of using virtualized point-wise/cell-wise data model
interface access, rather than implementation-direct data struc-
ture access (pointers). We show this because there are per-
formance concerns for using pointers vs. interface accessor
functions. As we can see, there is an overhead, but this
time overhead is insignificant in relationship to the typical
time of in situ analysis taken in simulations (around 1% or
seconds vs. minutes) [20] (i.e., Amdahl’s Law). Minor per-
formance gains come at the cost of having tightly coupled
code that is dependent on the data set implementation. In
certain circumstances, our refactored version was faster that
we suspect is due to caching and memory access patterns and
would require further study to determine the cause.

Performance of Deep vs. Shallow.
Figures 6 and 7 show the memory and time savings of

an on-demand shallow copy. A shallow copy of a MOAB
mesh to VTK mesh is faster and uses less memory than
the deep copy solution. It approximately saves 5 to 9 times
memory, minimally, for a tetrahedral mesh that only has
one attribute. With only one attribute, this test shows the
worst memory and time savings for a shallow copy. As more
attributes are added, a shallow copy will save more time
and memory. Also, a shallow copy only has to be performed
once, compared to a deep copy (unless the address mapping
function needs to be changed), saving additional time for a
copy. A deep copy has to be performed every time in situ

 0.001

 0.01

 0.1

 1

 10

 100

Ti
m

e
(s

)

Processors (16-512)

ML Copy

 0.01

 0.1

 1

 10

 1 10

Ti
m

e
(s

)

Processors (1-16)

SL230 Copy

 0.001

 0.01

 0.1

 1

 10

 1 10
Ti

m
e

(s
)

Processors (1-64)

DL980 Copy

Figure 6: Moonlight shallow copy compared to deep
copy is 7.11 times faster, SL230 is 1.88 times faster,
and DL980 is 1.98 times faster.

analysis takes place, if an attribute changes, to make sure
that data are updated in VTK.

Performance of Algorithms on Deep vs. Shallow.
Figures 8, 9, and 10 show the performance of VTK al-

gorithms running on shallow copy vs. deep copy versions
of MOAB meshes. As was expected, algorithms using an
on-demand shallow copy are slower than native, deep copied
data, but not overly so. The worst case is shown by the touch
(read) all data test, which is 4.12 times slower on average for
Moonlight, 4.54 times slower on average for SL230, and 2.65
times slower on average for DL980. For tests that produce
data products (isocontouring, clipping, slicing, thresholding,
and surface rendering), this ranges from 1.02 to 2.16 times
slower on Moonlight, 1.08 to 2.08 times slower on SL230,
and 1.06 to 1.65 times slower on DL980.

This performance loss is acceptable for many reasons. 1)
It trades memory gain for loss in algorithm speed, which
is becoming a rare commodity at exascale and increased in
situ analysis. 2) There are future potential optimizations, as
these results are unoptimized implementations of the thunk.
3) In a typical projected exascale supercomputer, “computa-
tion will be free,” as there will be more compute cycles than
any other resource. 4) As noted earlier, the time taken for
in situ analysis is insignificant in many cases, compared to
the overall simulation time, and the performance loss here is
minor relative to that. 5) On-demand translation hidden in
the shallow copy mesh implementation saves programming
time by allowing existing algorithms to execute as-is.

6. CONCLUSION
We have demonstrated that it is viable to couple simu-

lations and in situ analysis through on-demand translation
of meshes. A simulation mesh can be shallow copied to in
situ code, without refactoring analysis algorithms and sav-
ing the memory cost of a copy of the mesh. Our study has
several avenues that have been left unexplored. There may
be optimizations that might be useful to attempt to couple
multi-physics codes in this way. For coupled physics, the
computational overhead may be large, but possibly worth-

 0.1

 1

 10

 100

 1000

 100

M
em

or
y

(M
B)

Processors (16-512)

ML Add'l Memory per Process

 100

 1000

 10000

 100000

 100

M
em

or
y

(M
B)

Processors (16-512)

ML Total Memory Used

 1

 10

 100

 1000

 1 10

M
em

or
y

(M
B)

Processors (1-16)

SL230 Add'l Memory per Process

 10

 100

 1000

 1 10

M
em

or
y

(M
B)

Processors (1-16)

SL230 Total Memory Used

 1

 10

 100

 1000

 1 10

M
em

or
y

(M
B)

Processors (1-64)

DL980 Add'l Memory per Process

 10

 100

 1000

 1 10

M
em

or
y

(M
B)

Processors (1-64)

DL980 Total Memory Used

Figure 7: Moonlight shallow copy compared to deep
uses 8.45 times less memory, for a quadrilateral
mesh. SL230 uses 6.07 times less memory and
DL980 uses 5.17 times less memory, for a tetrahedral
mesh.

while if it allows the codes to run, that wouldn’t otherwise
due to memory overhead. We can look into compiler opti-
mizations that overlap mesh translation with mesh compu-
tation. Another optimization lies within the analysis algo-
rithms, by specializing filters based on the implementation
of data sets. For example, if an algorithm detects that it is
running on a MOAB shallow copy implementation, it could
use an optimized algorithm for the MOAB memory layout.
These could be compiler level optimizations, as well. Also,
this method would be useful in combination with I/O li-
braries, to seamlessly serialize meshes to and from storage,
without copying data to the I/O library.

Acknowledgments
This research was funded by the Department of Energy
(DOE) Advanced Scientific Computing Research (ASCR)
and Scientific Discovery through Advanced Computing (Sci-
DAC) through the CESAR (Center for Exascale Simulation
of Advanced Reactors) Co-design Center. Computing re-
sources for the performance study were provided by LANL
institutional computing and CCS-7 and HPC divisions. This
paper is published under LA-UR-13-27909.

7. REFERENCES
[1] G. Abram and L. Treinish. An extended data-flow

architecture for data analysis and visualization. In
Proceedings of the 6th conference on Visualization ’95,
VIS ’95, page 263, Washington, DC, USA, 1995. IEEE
Computer Society.

 0.001

 0.01

 0.1

 1

 100

Ti
m

e
(s

)

Processors (16-512)

ML Touch All Data Once

 0.01

 0.1

 1

 10

 100

Ti
m

e
(s

)

Processors (16-512)

ML Contour

 0.01

 0.1

 1

 10

 100

 1000

 100

Ti
m

e
(s

)

Processors (16-512)

ML Clip

 0.01

 0.1

 1

 100
Ti

m
e

(s
)

Processors (16-512)

ML Slice

 0.01

 0.1

 1

 10

 100

Ti
m

e
(s

)

Processors (16-512)

ML Threshold

 0.1

 1

 10

 100

Ti
m

e
(s

)

Processors (16-512)

ML Surface Render

Figure 8: ML shallow copy filter timings compared
to deep: touching is 4.12 times slower, isocontouring
is 2.13 slower, clipping is 1.02 times slower, slicing is
1.19 times slower, thresholding is 2.16 times slower,
and rendering is 1.21 times slower.

[2] ANSYS, Inc. ANSYS fluent.
http://www.ansys.com/Products/
Simulation+Technology/Fluid+Dynamics/
Fluid+Dynamics+Products/ANSYS+Fluent, Apr.
2013.

[3] T. D. Blacker, W. J. Bohnhoff, T. L. Edwards, J. R.
Hipp, R. R. Lober, S. A. Mitchell, G. D. Sjaardema,
T. J. Tautges, T. J. Wilson, W. J. Oakes, S. Benzley,
J. C. Clements, L. Lopez-Buriek, S. Parker,
M. Whitely, D. White, and E. Trimble. CUBIT mesh
generation environment volume 1: Users manual.
Technical Report SAND94-1100, Sandia National
Laboratories, May 1994.

[4] P. G. Brown. Overview of sciDB: large scale array
storage, processing and analysis. In Proceedings of the
2010 ACM SIGMOD International Conference on
Management of data, SIGMOD ’10, pages 963–968,
New York, NY, USA, 2010. ACM.

[5] K. Chand, L. Diachin, X. Li, C. Ollivier-Gooch,
E. Seol, M. Shephard, T. Tautges, and H. Trease.
Toward interoperable mesh, geometry and field
components for PDE simulation development.
Engineering with Computers, 24(2):165–182, 2008.

[6] J. A. Clarke and R. R. Namburu. A distributed
computing environment for interdisciplinary
applications. Concurrency and Computation: Practice
and Experience, 14(13-15):1161–1174, 2002.

[7] W. W. Dai. HIO: a library for high performance I/O
and data management. In Parallel and Distributed
Processing Workshops and Phd Forum (IPDPSW),

 0.001

 0.01

 0.1

 1

 1 10

Ti
m

e
(s

)

Processors (1-16)

SL230 Touch All Data Once

 0.1

 1

 10

 1 10

Ti
m

e
(s

)

Processors (1-16)

SL230 Contour

 0.1

 1

 10

 1 10

Ti
m

e
(s

)

Processors (1-16)

SL230 Clip

 0.01

 0.1

 1

 10

 1 10

Ti
m

e
(s

)

Processors (1-16)

SL230 Slice

 0.01

 0.1

 1

 10

 1 10

Ti
m

e
(s

)

Processors (1-16)

SL230 Threshold

 0.1

 1

 10

 1 10

Ti
m

e
(s

)

Processors (1-16)

SL230 Surface Render

Figure 9: SL230 shallow copy filter timings com-
pared to deep: touching is 4.54 times slower, isocon-
touring is 1.54 times slower, clipping is 1.26 times
slower, slicing is 1.87 times slower, thresholding is
2.08 times slower, and rendering is 1.08 times slower.

2011 IEEE International Symposium on, pages
1759–1766, 2011.

[8] C. Docan, M. Parashar, and S. Klasky. Dataspaces: an
interaction and coordination framework for coupled
simulation workflows. Cluster Computing,
15(2):163–181, 2012.

[9] D. Duke, M. Wallace, R. Borgo, and C. Runciman.
Fine-grained visualization pipelines and lazy
functional languages. Visualization and Computer
Graphics, IEEE Transactions on, 12(5):973–980, 2006.

[10] N. Fabian, K. Moreland, D. Thompson, A. C. Bauer,
P. Marion, B. Gevecik, M. Rasquin, and K. E. Jansen.
The ParaView coprocessing library: A scalable,
general purpose in situ visualization library. In 2011
IEEE Symposium on Large Data Analysis and
Visualization (LDAV), pages 89–96. IEEE, Oct. 2011.

[11] M. Folk, A. Cheng, and K. Yates. HDF5: a file format
and I/O library for high performance computing
applications. In Proceedings of Supercomputing 1999,
Portland, OR, 1999.

[12] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J.
Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R.
Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger,
H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring,
A. Williams, and K. S. Stanley. An overview of the
trilinos project. ACM Trans. Math. Softw.,
31(3):397–423, Sept. 2005.

[13] L. Ionkov, M. Lang, and C. Maltzahn. DRepl:
optimizing access to application data for analysis and
visualization. In To appear in IEEE MSST Conference

 0.001

 0.01

 0.1

 1

 1 10

Ti
m

e
(s

)

Processors (1-64)

DL980 Touch All Data Once

 0.1

 1

 10

 1 10

Ti
m

e
(s

)

Processors (1-64)

DL980 Contour

 0.1

 1

 10

 1 10

Ti
m

e
(s

)

Processors (1-64)

DL980 Clip

 0.01

 0.1

 1

 10

 1 10
Ti

m
e

(s
)

Processors (1-64)

DL980 Slice

 0.01

 0.1

 1

 10

 1 10

Ti
m

e
(s

)

Processors (1-64)

DL980 Threshold

 0.1

 1

 10

 1 10

Ti
m

e
(s

)

Processors (1-64)

DL980 Surface Render

Figure 10: DL980 shallow copy filter timings com-
pared to deep: touching is 2.65 times slower, isocon-
touring is 1.33 times slower, clipping is 1.17 times
slower, slicing is 1.32 times slower, thresholding is
1.65 times slower, and rendering is 1.06 times slower.

on Massive Storage 2013, 2013.
[14] S. Kuo, M. Winslett, Y. Cho, J. Lee, and Y. Chen.

Efficient input and output for scientific simulations. In
Proceedings of the sixth workshop on I/O in parallel
and distributed systems, pages 33–44, 1999.

[15] J. Li, W.-K. Liao, A. Choudhary, R. Ross, R. Thakur,
W. Gropp, R. Latham, A. Siegel, B. Gallagher, and
M. Zingale. Parallel netCDF: a high-performance
scientific I/O interface. In Supercomputing, 2003
ACM/IEEE Conference, pages 39–39, 2003.

[16] L.-T. Lo, C. Sewell, and J. Ahrens. PISTON: a
portable cross-platform framework for data-parallel
visualization operators. Eurographics Symposium on
Parallel Graphics and Visualization, 2012.

[17] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki,
and C. Jin. Flexible IO and integration for scientific
codes through the adaptable IO system (ADIOS). In
Proceedings of the 6th international workshop on
Challenges of large applications in distributed
environments, CLADE ’08, pages 15–24, New York,
NY, USA, 2008. ACM.

[18] J. S. Meredith, S. Ahern, D. Pugmire, and R. Sisneros.
EAVL: the extreme-scale analysis and visualization
library. In Eurographics Symposium on Parallel
Graphics and Visualization, pages 21–30, 2012.

[19] K. Moreland, U. Ayachit, B. Geveci, and K.-L. Ma.
Dax toolkit: A proposed framework for data analysis
and visualization at extreme scale. In 2011 IEEE
Symposium on Large Data Analysis and Visualization
(LDAV), pages 97–104. IEEE, Oct. 2011.

[20] J. M. Patchett, J. P. Ahrens, B. Nouanesengsy, P. K.
Fasel, P. W. Oleary, C. M. Sewell, J. L. Woodring,
C. J. Mitchell, L.-T. Lo, K. L. Myers, J. R.
Wendelberger, C. V. Canada, M. G. Daniels, H. M.
Abhold, and G. M. Rockefeller. LANL CSSE L2: Case
Study of In Situ Data Analysis in ASC Integrated
Codes. Technical Report LA-UR-13-26599, Los
Alamos National Laboratory, Aug. 2013.

[21] T. Peterka, R. Ross, A. Gyulassy, V. Pascucci,
W. Kendall, H.-W. Shen, T.-Y. Lee, and
A. Chaudhuri. Scalable parallel building blocks for
custom data analysis. In 2011 IEEE Symposium on
Large Data Analysis and Visualization (LDAV), pages
105–112. IEEE, Oct. 2011.

[22] R. Rew, E. Hartnett, J. Caron, et al. NetCDF-4:
software implementing an enhanced data model for
the geosciences. In 22nd International Conference on
Interactive Information Processing Systems for
Meteorology, Oceanograph, and Hydrology, 2006.

[23] L. A. Schoof and V. R. Yarberry. EXODUS II: a finite
element data model. Technical Report SAND92-2137,
Sandia National Laboratories, Sept. 1994.

[24] W. J. Schroeder, K. M. Martin, and W. E. Lorensen.
The design and implementation of an object-oriented
toolkit for 3D graphics and visualization. In
Proceedings of the 7th conference on Visualization ’96,
VIS ’96, Los Alamitos, CA, USA, 1996. IEEE
Computer Society Press.

[25] S. Sehrish, R. Latham, T. Tautges, N. Samatova,
B. Clifford, Q. Koziol, W.-k. Liao, R. Ross, and
A. Choudhary. DAMSEL - a data model based storage
library. Technical report, Arlington, VA, USA, Oct.
2012.

[26] T. J. Tautges, R. Meyers, K. Merkley, C. Stimpson,
and C. Ernst. MOAB: a mesh-oriented database.
SAND2004-1592, Sandia National Laboratories, Apr.
2004. Report.

[27] R. Thakur, E. Lusk, and W. Gropp. Users guide for
ROMIO: a high-performance, portable MPI-IO
implementation. Technical Report
ANL/MCS-TM-234, Argonne National Laboratory,
Lemont, IL, Oct. 1997.

[28] T. Tu, H. Yu, L. Ramirez-Guzman, J. Bielak,
O. Ghattas, K.-L. Ma, and D. R. O’Hallaron. From
mesh generation to scientific visualization: An
end-to-end approach to parallel supercomputing. In
Supercomputing, ACM/IEEE 2006, page 91, Tampa,
Florida, 2006.

[29] V. Vishwanath, M. Hereld, and M. E. Papka. Toward
simulation-time data analysis and I/O acceleration on
leadership-class systems. In 2011 IEEE Symposium on
Large Data Analysis and Visualization (LDAV), pages
9–14. IEEE, Oct. 2011.

[30] H. T. Vo, D. K. Osmari, B. Summa, J. L. D. Comba,
V. Pascucci, and C. T. Silva. Streaming-enabled
parallel dataflow architecture for multicore systems.
Computer Graphics Forum, 29(3):1073–1082, 2010.

[31] B. Whitlock, J. Favre, and J. Meredith. Parallel in
situ coupling of simulation with a fully featured
visualization system. In Eurographics Symposium on
Parallel Graphics and Visualization, pages 100–109,
2011.

